249 research outputs found

    Kolmogorov widths under holomorphic mappings

    Full text link
    If LL is a bounded linear operator mapping the Banach space XX into the Banach space YY and KK is a compact set in XX, then the Kolmogorov widths of the image L(K)L(K) do not exceed those of KK multiplied by the norm of LL. We extend this result from linear maps to holomorphic mappings uu from XX to YY in the following sense: when the nn widths of KK are O(n−r)O(n^{-r}) for some r\textgreater{}1, then those of u(K)u(K) are O(n−s)O(n^{-s}) for any s \textless{} r-1, We then use these results to prove various theorems about Kolmogorov widths of manifolds consisting of solutions to certain parametrized PDEs. Results of this type are important in the numerical analysis of reduced bases and other reduced modeling methods, since the best possible performance of such methods is governed by the rate of decay of the Kolmogorov widths of the solution manifold

    Approximation of high-dimensional parametric PDEs

    Get PDF
    Parametrized families of PDEs arise in various contexts such as inverse problems, control and optimization, risk assessment, and uncertainty quantification. In most of these applications, the number of parameters is large or perhaps even infinite. Thus, the development of numerical methods for these parametric problems is faced with the possible curse of dimensionality. This article is directed at (i) identifying and understanding which properties of parametric equations allow one to avoid this curse and (ii) developing and analyzing effective numerical methodd which fully exploit these properties and, in turn, are immune to the growth in dimensionality. The first part of this article studies the smoothness and approximability of the solution map, that is, the map a↦u(a)a\mapsto u(a) where aa is the parameter value and u(a)u(a) is the corresponding solution to the PDE. It is shown that for many relevant parametric PDEs, the parametric smoothness of this map is typically holomorphic and also highly anisotropic in that the relevant parameters are of widely varying importance in describing the solution. These two properties are then exploited to establish convergence rates of nn-term approximations to the solution map for which each term is separable in the parametric and physical variables. These results reveal that, at least on a theoretical level, the solution map can be well approximated by discretizations of moderate complexity, thereby showing how the curse of dimensionality is broken. This theoretical analysis is carried out through concepts of approximation theory such as best nn-term approximation, sparsity, and nn-widths. These notions determine a priori the best possible performance of numerical methods and thus serve as a benchmark for concrete algorithms. The second part of this article turns to the development of numerical algorithms based on the theoretically established sparse separable approximations. The numerical methods studied fall into two general categories. The first uses polynomial expansions in terms of the parameters to approximate the solution map. The second one searches for suitable low dimensional spaces for simultaneously approximating all members of the parametric family. The numerical implementation of these approaches is carried out through adaptive and greedy algorithms. An a priori analysis of the performance of these algorithms establishes how well they meet the theoretical benchmarks

    Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

    Get PDF
    Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electro-magnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞L_\infty norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an LqL_q norm with q<∞q<\infty which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis.Comment: 24 page

    Tensor-Sparsity of Solutions to High-Dimensional Elliptic Partial Differential Equations

    Full text link
    A recurring theme in attempts to break the curse of dimensionality in the numerical approximations of solutions to high-dimensional partial differential equations (PDEs) is to employ some form of sparse tensor approximation. Unfortunately, there are only a few results that quantify the possible advantages of such an approach. This paper introduces a class Σn\Sigma_n of functions, which can be written as a sum of rank-one tensors using a total of at most nn parameters and then uses this notion of sparsity to prove a regularity theorem for certain high-dimensional elliptic PDEs. It is shown, among other results, that whenever the right-hand side ff of the elliptic PDE can be approximated with a certain rate O(n−r)\mathcal{O}(n^{-r}) in the norm of H−1{\mathrm H}^{-1} by elements of Σn\Sigma_n, then the solution uu can be approximated in H1{\mathrm H}^1 from Σn\Sigma_n to accuracy O(n−r′)\mathcal{O}(n^{-r'}) for any r′∈(0,r)r'\in (0,r). Since these results require knowledge of the eigenbasis of the elliptic operator considered, we propose a second "basis-free" model of tensor sparsity and prove a regularity theorem for this second sparsity model as well. We then proceed to address the important question of the extent such regularity theorems translate into results on computational complexity. It is shown how this second model can be used to derive computational algorithms with performance that breaks the curse of dimensionality on certain model high-dimensional elliptic PDEs with tensor-sparse data.Comment: 41 pages, 1 figur

    Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients

    Get PDF
    Elliptic partial differential equations with diffusion coefficients of lognormal form, that is a=exp(b)a=exp(b), where bb is a Gaussian random field, are considered. We study the â„“p\ell^p summability properties of the Hermite polynomial expansion of the solution in terms of the countably many scalar parameters appearing in a given representation of bb. These summability results have direct consequences on the approximation rates of best nn-term truncated Hermite expansions. Our results significantly improve on the state of the art estimates available for this problem. In particular, they take into account the support properties of the basis functions involved in the representation of bb, in addition to the size of these functions. One interesting conclusion from our analysis is that in certain relevant cases, the Karhunen-Lo\`eve representation of bb may not be the best choice concerning the resulting sparsity and approximability of the Hermite expansion
    • …
    corecore